Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Comput Methods Biomech Biomed Engin ; 25(15): 1722-1743, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1795520

ABSTRACT

Very recently, Atangana and Baleanu defined a novel arbitrary order derivative having a kernel of non-locality and non-singularity, known as AB derivative. We analyze a non-integer order Anthroponotic Leshmania Cutaneous (ACL) problem exploiting this novel AB derivative. We derive equilibria of the model and compute its threshold quantity, i.e. the so-called reproduction number. Conditions for the local stability of the no-disease as well as the disease endemic states are derived in terms of the threshold quantity. The qualitative analysis for solution of the proposed problem have derived with the aid of the theory of fixed point. We use the predictor corrector numerical approach to solve the proposed fractional order model for approximate solution. We also provide, the numerical simulations for each of the compartment of considered model at different fractional orders along with comparison with integer order to elaborate the importance of modern derivative. The fractional investigation shows that the non-integer order derivative is more realistic about the inner dynamics of the Leishmania model lying between integer order.


Subject(s)
Leishmania
2.
Saudi J Biol Sci ; 29(6): 103274, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1757829

ABSTRACT

Recent worldwide outbreak of SARS-COV-2 pandemic has increased the thirst to discover and introduce antiviral drugs to combat it. The bioactive compounds from plant sources, especially terpenoid have protease inhibition activities so these may be much effective for the control of viral epidemics and may reduce the burden on health care system worldwide. Present study aims the use of terpenoid from selected plant source through bioinformatics tools for the inhibition of SARS-COV-2. This study is based on descriptive analysis. The Protein Data Bank and PubChem database were used for the analysis of SARS-COV-2 protease and plant source terpenoids. Molecular docking by using molegro virtual docker (MVD) software was carried out. The findings of study are based on the inhibitory actions of different plant sourced terpenoid against SARS-COV-2. As per the available resources and complementary analysis these phytochemicals have capacity to inhibit 3CLpro protease. The study reports that (3,3-dimethylally) isoflavone (Glycine max), licoleafol (Glycyrrhiza uralensis), myricitrin (Myrica cerifera), thymoquinone (Nigella sativa), bilobalide, ginkgolide A (Ginkgo biloba), Salvinorin A (Salvia divinorum), citral (Backhousia citriodora) and prephenazine (drug) showed high activity against SARS-COV-2 protease 3CLpro. The drug like and ADMET properties revealed that these compounds can safely be used as drugs. Cross structural analysis by using bioinformatics study concludes that these plant source terpenoid compounds can be effectively used as antiprotease drugs for SARS-COV-2 in future.

3.
Drug Metab Rev ; 52(3): 408-424, 2020 08.
Article in English | MEDLINE | ID: covidwho-602031

ABSTRACT

Despite to outbreaks of highly pathogenic beta and alpha coronaviruses including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and human coronavirus, the newly emerged 2019 coronavirus (COVID-19) is considered as a lethal zoonotic virus due to its deadly respiratory syndrome and high mortality rate among the human. Globally, more than 3,517,345 cases have been confirmed with 243,401 deaths due to Acute Respiratory Distress Syndrome (ARDS) caused by COVID-19. The antiviral drug discovery activity is required to control the persistence of COVID-19 circulation and the potential of the future emergence of coronavirus. However, the present review aims to highlight the important antiviral approaches, including interferons, ribavirin, mycophenolic acids, ritonavir, lopinavir, inhibitors, and monoclonal antibodies (mAbs) to provoke the nonstructural proteins and deactivate the structural and essential host elements of the virus to control and treat the infection of COVID-19 by inhibiting the viral entry, viral RNA replication and suppressing the viral protein expression. Moreover, the present review investigates the epidemiology, diagnosis, structure, and replication of COVID-19 for better understanding. It is recommended that these proteases, inhibitors, and antibodies could be a good therapeutic option in drug discovery to control the newly emerged coronavirus.HighlightsCOVID-19 has more than 79.5% identical sequence to SARS-CoV and a 96% identical sequence of the whole genome of bat coronaviruses.Acute respiratory distress syndrome (ARDS), renal failure, and septic shock are the possible clinical symptoms associated with COVID-19.Different antivirals, including interferons, ribavirin, lopinavir, and monoclonal antibodies (mAbs) could be the potent therapeutic agents against COVID-19.The initial clinical trials on hydroquinone in combination with azithromycin showed an admirable result in the reduction of COVID-19.The overexpression of inflammation response, cytokine dysregulation, and induction of apoptosis could be an well-organized factors to reduce the pathogenicity of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Drug Discovery , Pneumonia, Viral/drug therapy , Antibodies, Monoclonal/therapeutic use , Betacoronavirus/chemistry , Betacoronavirus/genetics , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Humans , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Serine Endopeptidases/physiology , Serine Proteinase Inhibitors/therapeutic use , Virus Replication , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL